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Abstract—It is believed that online disease risk assessment system has great potential to alleviate the medical treatment problems for
the future smart city and communities, as it can excavate disease risk factors from a large number of patient features, provide
diagnostic references for doctors, and save medical treatment time for patients. However, the flourish of online disease risk assessment
service still faces severe challenges including information privacy and security. In this paper, based on the naı̈ve bayesian
classification, we propose an efficient and privacy-preserving disease risk assessment scheme over multi-outsourced vertical datasets,
named CARER. With CARER, the e-healthcare provider can securely train a disease risk predication model over vertically distributed
medical data from multiple medical centers (i.e., hospitals), and provide privacy-preserving disease risk predication services for users
(i.e., patients and doctors). During the model training and disease risk prediction phases, all sensitive data are operated over
ciphertexts without decryption. As a result, the private information of medical centers, e-healthcare provider, and users can be well
protected. Detailed security analysis shows that CARER can resist various known security threats. In addition, we evaluate the
performance of CARER with real medical datasets, and the results demonstrate that CARER is efficient.

Index Terms—Disease risk assessment, privacy-preserving, secure data training, naı̈ve bayesian classification.

F

1 INTRODUCTION

UNDER big data-driven society, a large amount of data
is already being collected in an e-healthcare system to

generate insights on disease prediction and to improve pa-
tient care [1], [2]. As one of the most popular applications in
e-healthcare, online disease risk assessment is revolutioning
traditional medical, as it can detect a risk condition before it
becomes an illness or disorder, and the cost of intervention
is far less than the eventual cost of treatment [3], [4]. In gen-
eral, disease risk assessment mainly consists of two phases,
i.e., model training and disease risk prediction. As shown in
Fig. 1, in the model training phase, the e-healthcare provider
collects and aggregates local medical data from multiple
medical centers, and trains a disease risk prediction model
based on machine learning algorithms [5], [6]. While in
the disease risk prediction phase, the e-healthcare provider
can offer online disease risk prediction services for users
with the trained prediction model, which will significantly
improve the medical treatment efficiency and the quality of
people’s life.

Unfortunately, owing to the sensitivity of medical in-
formation, the flourish of online disease risk assessment is
still confronted with severe hassles including data privacy
and security [7], [8], [9]. Firstly, local medical data generally
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Fig. 1. Conceptual architecture of online disease risk assessment ser-
vice.

contain massive patients’ treatment records and statisti-
cal data of medical centers, which may disclose patients’
individual information and medical centers’ clinical treat-
ment programs when outsourcing them to the e-healthcare
provider. Secondly, the trained disease risk prediction model
is commonly regarded as valuable business assets. Leakage
of the prediction model may directly result in an economic
loss of the e-healthcare provider. Thirdly, users’ disease
risk query requests and corresponding query results are
also high sensitive, since they may reveal users’ private
information, such as health conditions, illness, and medica-
tion situation during the disease risk prediction. Therefore,
in online disease risk assessment, these sensitive data of
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medical centers, e-healthcare provider and users cannot be
leaked to each other.

To address the above-mentioned challenges, plenty of
privacy-preserving medical data processing schemes have
been proposed, which mainly rely on homomorphic encryp-
tion [10], [11] and secure multi-party computation (SMC)
technique [12], [13]. Specifically, homomorphic encryption
supports arithmetical operations over ciphertexts, which
can well protect sensitive medical data during disease
risk assessment. However, most homomorphic encryption-
based schemes bring heavy computation overhead since
they contain massive time-consuming operations such as
bilinear pairing. SMC-based schemes can achieve privacy-
preserving model training or disease risk prediction, but
most of them require multiple interactions to complete a
specific operation over ciphertexts, which will bring mas-
sive extra communication overhead in distributed scenarios.
Moreover, few of existing privacy-preserving medical data
processing schemes work on vertically distributed datasets.

In this paper, based on the naı̈ve bayesian classification,
we propose an efficient and privacy-preserving online dis-
ease risk assessment scheme over multi-outsourced vertical
datasets, named CARER. With CARER, the e-healthcare
provider can securely train a disease risk predication model
over vertically distributed medical data from multiple medi-
cal centers, and provide privacy-preserving disease risk pre-
diction services for users. During the process, the sensitive
information of medical centers, e-healthcare provider, and
users can be well protected. Specifically, the main contribu-
tions of this paper are threefold.

• First, CARER achieves disease risk prediction mod-
el training over vertically distributed data and the
trained model can be dynamically updated. In CAR-
ER, even if medical centers collect different attributes
from instances, the disease risk prediction model
can also be effectively trained by the e-healthcare
provider. In addition, a model updating strategy is
designed, which allows medical centers to upload
their fresh collected medical data for updating the
prediction model regularly.

• Second, CARER is privacy-preserving in both model
training and disease risk predication. In CARER,
we propose a modified Paillier cryptosystem, with
which the prediction model can be securely trained
without disclosing sensitive data of medical centers.
Besides, random masking technique is applied in
disease risk prediction, which preserves the disease
risk prediction model of the e-healthcare provider
and disease risk query requests/results of users.
Therefore, all sensitive data are protected in CARER.

• Third, CARER is computationally and communica-
tion efficient in both model training and disease risk
predication. During the model training phase, the
encryption times and communication overhead are
greatly reduced with data pre-processing in medical
centers. Besides, the high-efficiency of disease risk
prediction phase is also ensured through simplify-
ing arithmetical operations of naı̈ve bayesian clas-
sification. The evaluation with real medical datasets
shows that CARER is efficient and can be implement-

ed in the real environment.

The remainder of this paper is organized as follows. In
section 2, we formalize the models and identify our design
goal. In section 3, we review the Paillier cryptosystem and
disease risk prediction model with naı̈ve bayesian classi-
fication as preliminaries. Then, we propose our CARER
in section 4, followed by the security analysis and perfor-
mance evaluation are presented in section 5 and section 6,
respectively. We also review some related works in section 7.
Finally, we draw our conclusions in section 8.

2 MODELS, SECURITY REQUIREMENTS AND DE-
SIGN GOAL

In this section, we first formalize the system model, threaten
model, and security requirements. Then, we identify our
design goal.

2.1 System Model

In our system model, we mainly focus on how to provide
privacy-preserving medical data training and disease risk
prediction for online disease risk assessment system. Each
medical center/user is equipped with a PC/mobile device,
which can connect with the e-healthcare provider. Specifi-
cally, the system consists of four parts: 1) trusted authority
(TA); 2) medical centers (MCs); 3) e-healthcare provider (EP)
and 4) users. As shown in Fig. 2.

E-healthcare Provider (EP)E-healthcare Provider (EP)healthcare Provihealthcare Proviealthcare Provealthcare Prov

Trusted Authority (TA)Trusted Authority (TA)Trusted Authority (TA)Trusted Authority (TA)

Keys & System 
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Secure disease risk 
assessment

Users

K1

Medical Centers 
(MCs)

Fig. 2. System model under considered.

• TA is a trusted authority (i.e., a government organi-
zation), which bootstraps the whole system through
generating system parameters, and distributing keys
for medical centers, e-healthcare provider, and users.

• MCs = {MC1, · · · ,MCm} is a set of m medical cen-
ters. In our system, each MCi ∈ MCs owns its local
medical dataset. Moreover, each MCi will execute the
pre-processing and encryption operations to gener-
ate its encrypted local training data, and outsource
the ciphertexts to the e-healthcare provider. Note
that, different medical centers may collect different
attributes in our scheme.
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• EP is the e-healthcare provider, which is an online
healthcare organization offering disease risk assess-
ment. EP is responsible for aggregating the encrypted
local training data from multiple medical center-
s, training the disease risk prediction model, and
offering privacy-preserving disease risk prediction
services for users.

• Users are patients or doctors in the e-healthcare
system, which are represented as {U1, · · · ,Un}. Each
Ui ∈ {U1, · · · ,Un} owns a symptom vector collected
by medical sensors, with which the user can compute
her/his encrypted disease risk query request, and
further access disease risk prediction services from
EP.

2.2 Threaten Model and Security Requirements
In our threaten model, we consider that MCs, EP and users
are honest-but-curious [14]. Specifically, MCs and EP honestly
execute the operations during the model training process,
but for commercial interests, a MC wants to obtain other
MCs’ local training data and EP’s prediction model. Besides,
EP is also greedy about each MC’s local training data. More-
over, during the disease risk prediction process, users and
EP execute the protocol strictly, but EP attempts to analyze
the accurate symptom vectors and disease risk query results
of users. Besides, users are also curious about the disease
risk prediction model of EP. Note that there may be some
other attacks (i.e., poisoning attacks and denial of service)
in an e-healthcare system. Since our target is to protect sen-
sitive data of MCs, EP, and users in disease risk assessment,
these attacks are currently out of scope of this paper and
will be considered in future work. Considering the above
security issues, the following security requirements should
be satisfied.

• Confidentiality: Ensuring the security of MCs’ local
training data and EP’s prediction model. In general,
both of the local training data and the trained disease
risk prediction model are regarded as private proper-
ties of enterprises. Therefore, during the disease risk
assessment, the local training data of MCs and the
prediction model of EP cannot be revealed.

• Privacy: Protecting users’ symptom vectors and dis-
ease query results from EP. Since the symptom vector
and disease risk query results can reflect a user’s pri-
vate information, during the disease risk assessment,
it should be ensured that EP learns no information
about users’ accurate symptom vectors and the final
disease risk query results.

2.3 Design Goal
Under the above-mentioned system model and security
requirements, our design goal is to develop an efficient
and privacy-preserving disease risk assessment scheme over
multi-outsourced vertically distributed medical data. Specif-
ically, the following three objectives should be achieved.

• Achieve vertically distributed medical data training and
updating. In practice, medical data are distributive-
ly stored in multiple medical centers, and different
medical centers may collect different attributes from

instances. Therefore, CARER should support data
aggregation and training over vertically distributed
data. Moreover, data updating is also required for
renewing the prediction model regularly.

• Guarantee security and privacy preservation. Medical
data privacy and security is always a vexing problem
lying ahead the disease risk assessment system. Once
the sensitive medical data of MCs, EP, and users
are disclosed, it may lead to serious consequences.
Therefore, protecting the local training data of MCs,
disease risk prediction model of EP, and symptom
vectors/disease risk query results of users should be
guaranteed.

• Low computation and communication overhead. Al-
though the computational capabilities of servers and
mobile devices are increasing rapidly, and the com-
munication between MCs and EP is equipped with
high-bandwidth with low-delay. However, it is still
difficult for EP to handle huge amounts of medi-
cal data. Meanwhile, the batteries of users’ mobile
devices are still limited. Considering the above fac-
tors, the proposed scheme should accomplish high-
efficiency in terms of computation and communica-
tion.

3 PRELIMINARIES

In this section, we review Paillier cryptosystem, naı̈ve
bayesian classification, and introduce the disease risk pre-
diction with naı̈ve bayesian classification, which will serve
as the basis of our scheme.

3.1 Paillier Cryptosystem

We apply Paillier cryptosystem [15] as a building block of
CARER, which is a widely used public key cryptography
with additive homomorphism. Here, we briefly review the
Paillier cryptosystem as follows.

• Key Generation: Choose the security parameter κ and
two big primes |p| = |q| = κ, compute N = p · q and
λ = lcm(p− 1, q− 1). Then, select a random number
g ∈ Z∗

N2 satisfying gcd(L(gλ mod N2), N) = 1,
where L(x) = (x − 1)/N . Moreover, compute µ =
(L(gλ mod N2))−1 mod N . Then, the public key pk
is (N, g), and the corresponding secret key sk is
(µ, λ).

• Encryption: Given a message m ∈ ZN , the cipher-
text can be computed with the public key pk as
c = Epk(m) = gm ·rN mod N2, where r is a random
number in Z∗

N .
• Decryption: Given a ciphertext c ∈ Z∗

N2 , the corre-
sponding plaintext can be retrieved with the secret
key sk through computing m = Dsk(c) = L(cλ mod
N2) · µ mod N.

The additive homomorphism of Paillier can be described
as: for two arbitrary ciphertexts c1 = Epk(m1) and
c2 = Epk(m2), we have c1 · c2 = Epk(m1) · Epk(m2) =
gm1+m2(r1r2)

N = Epk(m1 +m2).

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:45:29 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3026631, IEEE
Transactions on Dependable and Secure Computing

4

3.2 Naı̈ve Bayesian Classification
Naı̈ve bayesian classification [16] is a very concise and
useful classifier, which can be used to calculate the posterior
probability of an unconfirmend instance belonging to a
certain class. Assume that there are v classes denoted as
{y1, y2, · · · , yv}, and an instance is described as a attribute
vector X = (x1, x2, · · · , xu). The posterior probability of
X belonging to each class yj ∈ {y1, y2, · · · , yv} can be
computed with Bayes theorem

Pr(yj |X) =
Pr(X|yj) Pr(yj)

Pr(X)
,

where i = 1, 2, · · · , f , Pr(X|yj) is the conditional probability
of X, Pr(yj) and Pr(X) are the prior probabilities of yj and
X, respectively. Since Pr(X) is the same for all classes, only
Pr(X|yj) Pr(yj) needs to be calculated. Moreover, it can be
inferred that X lies in the class yj′ , if and only if Pr(yj′ |X) is
the maximum value in Pr(yj |X), where j = 1, 2, · · · , v.

The naı̈ve bayesian classification assumes that all at-
tributes of X are conditionally independent of each other.
Therefore, Pr(X|yj) Pr(yj) can be calculated as

Pr(X|yj) · Pr(yj) =
∏u

i=1
Pr(xi|yj) · Pr(yj).

Obviously, Pr(xi|yj), where i = 1, 2, · · · , u, can be easily
obtained from the training dataset.

3.3 Disease Risk Prediction with Naı̈ve Bayesian Clas-
sification
Naı̈ve bayesian classification can be used in predicting the
risk of suffering diseases for e-healthcare system [11], [17],
[18]. In the following, we introduce the disease risk predic-
tion with naı̈ve bayesian classification.

Given the training dataset containing a large num-
ber of confirmed clinical instances, where each instance
consists of two binary vectors: X = (x1, x2, · · · , xu) ∈
{0, 1}u is the symptom vector with u attributes, and Y =
(y1, y2, · · · , yv) ∈ {0, 1}v is the disease set with v disease
classes. Specifically, xs = 1 means that the instance has the
symptom xs, and xs = 0 otherwise; yt = 1 means that the
instance suffers from the disease yt, and yt = 0 otherwise.
With the training dataset, a naı̈ve bayesian classifier can be
trained. For example, Pr(xs = 1|yt = 1) can be estimated as
Pr(xs = 1|Yt = 1) = Nzts/Nyt, where Nzts is the number
of instances who have the symptom xs and suffer from the
disease yt, Nyt is the number of instances who suffer from
the disease yt. Similarly, the probabilities Pr(xs = 0|yt = 1),
Pr(yt = 1), Pr(xs = 1|yt = 0), Pr(xs = 0|yt = 0), and
Pr(yt = 0), where s = 1, 2, · · · , u and t = 1, 2, · · · , v, can
also be easily obtained.

To predict the disease risk of a user with symptom vector
X’ = (x′

1, x
′
2, · · · , x′

u). the posterior probability P (yt|X’) can
be estimated as follows.

Pr(yt = 1|X’) =
∏u

s=1 Pr(xs = x′
s|yt = 1)·Pr(yt = 1)

Pr(X’)

Pr(yt = 0|X’) =
∏u

s=1 Pr(xs = x′
s|yt = 0)·Pr(yt = 0)

Pr(X’)
,

where t = 1, 2, · · · , v. Finally, if Pr(yt = 1|X’) > Pr(yt =
0|X’), it can be inferred that the risk of suffering from disease

yt is greater than not suffering from disease yt. Moreover,
through sorting the posterior probabilities of all diseases in
Y, the top-k disease risk list can also be obtianed.

4 PROPOSED PRIVACY-PRESERVING SCHEME

In this section, we present our CARER scheme, which main-
ly consists of four phases: 1) system initialization; 2) medical
data preprocessing and encryption; 3) secure data aggregation and
training and 4) privacy-preserving disease risk prediction. The
overview of CARER is described in Fig. 3. At first, each
MCi executes data preprocessing and encryption operations
on its local medical dataset to generate encrypted local
training data, which is further used to train the disease risk
prediction model by EP. Then, users encrypt their symptom
vectors for generating disease risk query requests, and EP
will provide the privacy-preserving disease risk prediction
service for users. To describe CARER clearer, we give the
description of used notations in Table 1.
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Fig. 3. Overview of CARER.

4.1 System Initialization
During the system initialization phase, TA generates the
system parameters, and distributes keys for MCs, EP, and
users, respectively.

TA first chooses security parameters κ, k1, k2, k3, k4, s.t.
k4 + 2k2 < k1, k2 + k3 < k1, k3 + k4 < k2, and executes
Gen(κ) to generate parameters of Paillier cryptosystem,
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TABLE 1
Definition of Notations in CARER

Notation Definition

κ, k1, k2, k3, k4 Security parameters.
|x| The bit length of x.
[[x]] The ciphertext of x with the modified Paillier en-

cryption.
X(ik) The symptom vector of k-th instance in i-th MCi.
Y(ik) The disease set of k-th instance in i-th MCi.

SKMCi
The secret key of MCi.

SKEP The secret key of EP.
SKUi

The secret key of Ui.
αi, pi Big primes of Ui used to generate query request.
V(i) The local training data of MCi, V = NX, NY, NZ,

ND, NL.
[[V(i)]] Encrypted local traning data of MCi.
[[V]] The aggregated ciphertext of [[V(i)]].
M Generated disease risk prediction model.
X′ The symptom vector of Ui.
Cj Disease query request, j = 1, 2, · · · , 2u+ 3.

LIt,LI′t Logarithm values of probabilities in disease risk
prediction model, t = 1, 2, · · · , v.

Dt, D′
t Disease risk query responses, t = 1, 2, · · · , v.

Rt, R′
t The disease risk query results, t = 1, 2, · · · , v.

which includes the secret key SKp = (µ, λ) and the public
key PKp = (N, g). Then, TA selects a large random number
γ satisfying |γ| < κ

2 , and computes h = gγ mod N2. Note
that MCs may collect different attributes of instances, a
list L covering all collected attributes needs to be gener-
ated by TA. Finally, TA publishes the public parameters
< κ, k1, k2, k3, k4, N, g, h,L >.

For MCs, TA splits N to m random numbers
{n1, n2, · · · , nm}, s.t.

∑m
i=1 ni = N , selects a random num-

ber st in Z∗
N as the task ID for every medical data ag-

gregation task, and computes the secret keys SKMCi =
st

ni mod N2, which are used to encrypt local training data
of MCs.

For EP, TA distributes the secret key SKEP =<
SKp, γ >=< λ, µ, γ > to EP, which is used to decrypt the
data aggregation results.

For each Ui, TA chooses two large primes pi and αi satis-
fying |pi| = k1 and |αi| = k2, which are used for encrypting
symptom vectors. Moreover, TA also sends < pi, αi > of
each Ui to EP.

4.2 Medical Data Preprocessing and Encryption

In this phase, every MCi first preprocesses its collected local
medical dataset to generate local training data. Moreover,
with the secret key SKMCi , each MCi encrypts its local
training data before sending to EP.

• Step 1. Medical Data Preprocessing
Assume that MCi owns a local medical dataset S(i),

which contains l(i) confirmed clinical instances. For each
instance, MCi collects w attributes and v diseases, which

can be represented as

X(ik) = (x
(ik)
1 , x

(ik)
2 , · · · , x(ik)

w ) ∈ {0, 1}w

Y(ik) = (y
(ik)
1 , y

(ik)
2 , · · · , y(ik)v ) ∈ {0, 1}v,

where k = 1, 2, · · · , l(i).
At first, MCi checks if there are uncollected attributes in

the List L. If existing, MCi pads the uncollected attributes
with zero for each instance. Assume that the number of at-
tributes in L is u, thus, X(ik) is extended to a u-dimensional
vector as

X(ik) = (x
(ik)
1 , x

(ik)
2 , · · · , x(ik)

u ) ∈ {0, 1}u.

Moreover, MCi generates a vector E = (e1, e2, · · · , eu),
where es = 1 if MCi collects the s − th attribute in L, and
es = 0, otherwise.

Then, for s = 1, 2, · · · , u, t = 1, 2, · · · , v, and k =

1, 2, · · · , l(i), MCi computes Nx
(i)
s =

∑l(i)

k=1 x
(ik)
s , Ny

(i)
t =∑l(i)

k=1 y
(ik)
t , Nz

(i)
ts =

∑l(i)

k=1 x
(ik)
s · y(ik)t , Nd

(i)
ts = Ny

(i)
t · es,

and Nl
(i)
s = l(i) · es. After this, the local training data

NX(i) = (Nx
(i)
1 , Nx

(i)
2 , · · · , Nx(i)

u )

NY(i) = (Ny
(i)
1 , Ny

(i)
2 , · · · , Ny(i)v )

NZ(i) = (Nz
(i)
11 , · · · , Nz

(i)
ts , · · · , Nz(i)vu)

ND(i) = (Nd
(i)
11 , · · · , Nd

(i)
ts , · · · , Nd(i)vu)

NL(i) = (Nl
(i)
1 , Nl

(i)
2 , · · · , Nl(i)u , l(i))

can be obtained. In detail, for s = 1, 2, · · · , u and t =
1, 2, · · · , v, NX(i), NY(i), and NZ(i) represent the number
of instances who have symptom xs, suffer from disease
yt, and have symptom xs while suffering from disease yt,
respectively. Besides, in order to construct prediction model
with vertically distributed datasets, vectors ND(i) and NL(i)

should be computed in our scheme. Specifically, ND(i) is
derived from NY(i) and collected attributes of MCi, while
NL(i) is computed with the total number of instances l(i)

and collected attributes of MCi.

• Step 2. Local Training Data Encryption
After generating local training data < NX(i), NY(i),

NZ(i), ND(i), NL(i) >, for each element a(i) in <
NX(i),NY(i),NZ(i),ND(i),NL(i) >, MCi executes encryp-
tion operations as follows

[[a(i)]] = ga
(i)

· hri · SKMCi
mod N2,

where ri is a random number satisfying |ri| < κ
2 . After this,

MCi obtains the encrypted local training data

< [[NX(i)]], [[NY(i)]], [[NZ(i)]], [[ND(i)]], [[NL(i)]] >,

and sends it to EP.

4.3 Secure Data Aggregation and Training

In this phase, with the proposed STDA algorithm, EP aggre-
gates the encrypted local training data of MCs, decrypts the
aggregated results with the secret key SKEP , and trains the
disease risk prediction model.

• Step 1. Secure Data Aggregation
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Once the encrypted local training data < [[NX(i)]],
[[NY(i)]], [[NZ(i)]], [[ND(i)]], [NL(i)]] >, where i = 1, 2, · · · ,m,
from all MCs are received, EP first executes aggregation op-
erations. Specifically, For each element [[a(i)]] in < [[NX(i)]],
[[NY(i)]], [[NZ(i)]], [[ND(i)]], [NL(i)]] >, i = 1, 2, · · · ,m, EP
aggregates the ciphertexts of local training data through
computing

[[a]] =
∏m

i=1
[[a(i)]] mod N2.

After this, EP obtains the encrypted global training data

< [[NX]], [[NY]], [[NZ]], [[ND]], [[NL]] > .

Furthermore, for every [[a]] in < [[NX]], [[NY]], [[NZ]],
[[ND]], [[NL]] >, EP decrypts it with the secret key SKEP

as follows

a = (L([[a]]λ mod N2 · µ) mod N) mod γ,

where L(x) = x−1
N . Finally, EP obtains the global training

data

NX = (Nx1, Nx2, · · · , Nxu)

NY = (Ny1, Ny2, · · · , Nyv)

NZ = (Nz11, · · · , Nzts, · · · , Nzvu)

ND = (Nd11, · · · , Ndts, · · · , Ndvu)

NL = (Nl1, Nl2, · · · , Nlu, l).

• Step 2. Disease Risk Prediction Model Training
With the elements in global training data <

NX,NY,NZ,ND,NL >, EP can train the disease risk pre-
diction model M through computing the following proba-
bilities

Pr(xs = 1|yt = 1) = Nzts
Ndts

Pr(xs = 1|yt = 0) = Nxs−Nzts
Nls−Ndts

Pr(yt = 1) = Nyt

l ,Pr(yt = 0) = 1− Pr(yt = 1)

Pr(xs = 0|yt = 1) = 1− Pr(xs = 1|yt = 1)

Pr(xs = 0|yt = 0) = 1− Pr(xs = 1|yt = 0).

4.4 Privacy-preserving Disease Risk Prediction
In this phase, with the proposed PDRP algorithm, users
encrypt their symptom vectors for generating disease risk
query requests, which will be used to compute disease
risk query responses over ciphertexts by EP. Finally, users
decrypt the query responses for obtaining the final disease
risk query results.

• Step 1. Disease Risk Query Generation
Assume that the symptom vector of a user Ui is

X′ = (x′
1, x

′
2, · · · , x′

u) ∈ {0, 1}u.

Firstly, Ui inverts each element in X’, and extends X′ to a
(2u+ 1)-dimensional vector such as

X′ = (x′
1, x

′
2, · · · , x′

2u+1)

= (x′
1, · · · , x′

u,¬x′
1, · · · ,¬x′

u, 1).

Then, Ui sets x′
2u+2 = x′

2u+3 = 0, chooses a large ran-
dom number σ ∈ Zpi , and selects 2u + 3 random numbers

Algorithm 1: STDA: Secure Training Data Aggregation

Input: The local medical datasets of MCs: S(i), i = 1,
2, · · · ,m.

Output: The global training data: NX, NY, NZ, ND
and NL.

1 MCi preprocesses S(i) to generate local training data

< NX(i),NY(i),NZ(i),ND(i),NL(i) >← S(i);

2 foreach a(i) in < NX(i), NY(i), NZ(i), ND(i), NL(i) >
do

3 MCi uses its secret key SKMCi to encrypt a(i)

[[a(i)]]← (a(i), SKMCi);

4 end
5 MCi obtains the encrypted local training data

< [[NX(i)]], [[NY(i)]], [[NZ(i)]], [[ND(i)]], [[NL(i)]] >;

6 foreach [[a(i)]] in < [[NX(i)]], [[NY(i)]], [[NZ(i)]], [[ND(i)]],
[[NL(i)]] > and i = 1, 2, · · · ,m do

7 EP aggregates the encrypted [[a(i)]] over ciphertexts

[[a]]← [[a(i)]];

EP uses its secret key SKEP to decrypt [[a]]

a← ([[a]], SKEP );

8 end
9 EP obtains the global training data

< NX,NY,NZ,ND,NL >;

cj , j = 1, 2, · · · , 2u + 3, with |cj | = k3. Moreover, for each
xj , j = 1, 2, · · · , 2u+ 3, Ui computes

Cj =

{
σ(x′

j · αi + cj) mod pi, x
′
j ̸= 0

σ · cj mod pi, x′
j = 0.

Finally, Ui keeps SKUi = σ−1 mod pi as her/his se-
cret key, and sends the disease risk query request <
C1, C2, · · · , C2u+3 > to EP.

• Step 2. Query Response Computation
After receiving query request < C1, C2, · · · , C2u+3 >

from Ui, EP computes the query responses for Ui through
the following operations.

Firstly, EP executes the logarithmic calculation on each
element in the disease risk prediction model M. Specifically,
for s = 1, 2, · · · , u and t = 1, 2, · · · , v, EP computes

Lpts = log(Pr(xs = 1|yt = 1)),

Lnts = log(Pr(xs = 0|yt = 1)), Ldt = log(Pr(yt = 1)),

Lp′ts = log(Pr(xs = 1|yt = 0)),

Ln′
ts = log(Pr(xs = 0|yt = 0)), Ld′t = log(Pr(yt = 0)),

where the base of logarithm function can be selected in (0, 1)
arbitrarily.

Then, for each disease yt, EP can generate two (2u+ 1)-
dimensional vectors as

LIt = (Lit1, Lit2, · · · , Lit(2u+1))
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= (Lpt1, · · · , Lptu, Lnt1, · · · , Lntu, Ldt)

LI′t = (Li′t1, Li
′
t2, · · · , Li′t(2u+1))

= (Lp′t1, · · · , Lp′tu, Ln′
t1, · · · , Ln′

tu, Ld
′
t),

where t = 1, 2, · · · , v. Moreover, EP computes the disease
risk query responses with the query requests of Ui and each
vector in (LI1, · · · ,LIv,LI′1, · · · ,LI′v).

For the simplification, we take computing the query
response with LIt as an example. EP first sets Lit(2u+2) =
Lit(2u+3) = 0, and computes

Dtj =

{
Litj · αi · Cj mod pi, Litj ̸= 0
rj · Cj mod pi, Litj = 0.

where rj is a random number, with |rj | = k4. After this, EP
computes Dt =

∑2u+3
j=1 Dtj .

Finally, EP can obtain 2v query responses <
D1, · · · , Dv, D

′
1, · · · , D′

v >, and sends them back to Ui.

• Step 3. Query Results Reading
Once query responses < D1, · · · , Dv, D

′
1, · · · , D′

v >
are received, Ui computes the query results through the
following operations.

We also take a Dt in < D1, · · · , Dv, D
′
1, · · · , D′

v > as an
example. With Dt, Ui computes

Et = σ−1 ·Dt mod pi, Rt =
Et − Et(modα2

i )

α2
i

.

Finally, Ui can obtain the disease risk query results
from < R1, · · · , Rv, R

′
1, · · ·R′

v >. Specifically, if Rt < R′
t,

the probability of suffering disease yt is greater than not
suffering disease yt, and if Rt > R′

t, otherwise. Moreover,
through sorting < R1, R2, · · · , Rv > from small to large,
the risk list of suffering diseases (y1, y2, · · · , yv) from high
to low can be obtained by Ui.

4.5 Disease Risk Prediction Model Updating
In practice, MCs collect medical data from instances contin-
uously. Therefore, the disease risk prediction model should
be updated regularly, which can be achieved with the fol-
lowing operations.

Firstly, TA renews the task ID to s′t, and updates secret
keys for each MCi through computing SKMCi = s′t

ni .
Then, assume that the new collected dataset of MCi is
represented as S′(i), via taking S′(i) as the input of ST-
DA Algorithm, EP and MC can execute STDA to securely
aggregate the new collected dataset from m MCs. Finally,
EP updates the global training data through adding the
aggregated results in it, and further renews the disease risk
prediction model with the updated global training data.

4.6 Correctness of the Proposed Scheme
In this section, we prove the correctness of algorithms STDA
and PDRP, which support our proposed scheme in basis.

• Correctness of STDA
In STDA, EP first aggregates the encrypted local training

data from MCs through the following calculations.

[[a]] =
∏m

i=1
[[a(i)]] mod N2

=
∏m

i=1
ga

(i)

· hri · sNi
t mod N2

Algorithm 2: PDRP: Privacy-preserving Disease Risk
Prediction

Input: The symptom vector X of Ui, and the disease
risk prediction model M of EP.

Output: The query results R1, · · · , Rv, R
′
1, · · · , R′

v .
1 Ui extends its symptom vector

X→ (x′
1, x

′
2, · · · , x′

2u+1);

2 Ui sets x′
2u+2 = x′

2u+3 = 0;
3 foreach j = 1, 2, · · · , 2u+ 3 do
4 Ui uses prime numbers α′, p′ and random

numbers cj to generate query requests

Cj ← (x′
j , αi, pi, cj);

5 end
6 foreach t = 1, 2, · · · , v do
7 EP uses the disease risk prediction model M to

compute
(LIt,LI′t)←M;

EP uses (LIt,LI′t) and query request < C1, C2, · · ·
C2u+3 > to compute

Dt ← (LIt, C1, C2, · · ·C2u+3)

D′
t ← (LI′t, C1, C2, · · ·C2u+3);

Ui uses its secret key SKUi to compute

Rt ← (Dt, SKUi)

R′
t ← (D′

t, SKUi);

8 end
9 Ui obtains the disease risk query results

< R1, · · · , Rv, R
′
1, · · · , R′

v >;

= g
∑m

i=1 a(i)

· h
∑m

i=1 ri · s
∑m

i=1 ni

t mod N2

= g
∑m

i=1 a(i)+γ·
∑m

i=1 ri · sNt mod N2.

Since |γ| = |ri| < κ
2 and a(i) are not big values, it can

be inferred that
∑m

i=1 a
(i) + γ ·

∑m
i=1 ri is in ZN , which

is the plaintext domain of Paillier cryptosystem. Then, EP
can correctly decrypt the aggregated results a =

∑m
i=1 a

(i)

through computing

a = (L([[a]]λ mod N2 · µ) mod N) mod γ

= (
∑m

i=1
a(i) + γ ·

∑m

i=1
ri) mod γ

=
∑m

i=1
a(i).

Therefore, it can be seen that the global training data is the
summation of the local training data from all MCs. More-
over, uncollected attributes are padded with zero, which
makes them no effect on computing the probabilities in
M. Finally, we can conclude that EP trains the disease risk
prediction model correctly.

• Correctness of PDRP
In PDRP, a secure inner product computation proto-

col [19] is applied to compute the query results Rt, R
′
t,

t = 1, 2, · · · , v. That is, the query results Rt and R′
t are

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:45:29 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3026631, IEEE
Transactions on Dependable and Secure Computing

8

the inner products of the extended symptom vector X′ of Ui

and the vectors LIt,LI′t. Then, we can compute

Rt = X′ · LIt

=
∑u

s=1
x′
s · log(Pr(xs = 1|yt = 1))

+
∑u

s=1
(1− x′

s) · log(Pr(xs = 0|yt = 1))

+ log(Pr(yt = 1))

=
∑u

s=1
log(Pr(xs = x′

s|yt = 1)) + log(Pr(yt = 1))

= log(
∏u

s=1
Pr(xs = x′

s|yt = 1) · Pr(yt = 1))

R′
t = X′ · LI′t
=

∑u

s=1
x′
s · log(Pr(xs = 1|yt = 0))

+
∑u

s=1
(1− x′

s) · log(Pr(xs = 0|yt = 0))

+ log(Pr(yt = 0))

=
∑u

s=1
log(Pr(xs = x′

s|yt = 0)) + log(Pr(yt = 0))

= log(
∏u

s=1
Pr(xs = x′

s|yt = 0) · Pr(yt = 0)).

Since logarithmic is a monotonic function and we
set the base in (0, 1), it is obvious that if Dt <
D′

t, then
∏u

s=1 Pr(xs = x′
s|yt = 1) · Pr(yt = 1) >∏u

s=1 Pr(xs = x′
s|yt = 0) · Pr(yt = 0), and the risk of suf-

fering the disease yt is greater than not suffering disease yt.
If Dt > D′

t, otherwise. Moreover, if Dt < Dt′ , we can infer
that the risk of suffering disease yt is greater than the risk
of suffering disease risk yt′ . Therefore, users can obtain the
disease risk query results correctly.

5 SECURITY ANALYSIS

In this section, we analyze the security of the proposed
CARER. Specifically, following the security requirements
discussed earlier, our analysis focuses on how to ensure
the confidentiality of MCs’ local training data and the EP’s
disease risk prediction model, as well as the privacy of
users’ symptom vectors/query results.
• The Confidentiality of MCs’ Local Training Data is

Achieved. During the model training phase, the confiden-
tiality of MCs’ local training data is achieved based on our
encryption algorithm, which is modified from Paillier cryp-
tosystem [15]. In the original Paillier cryptosystem, since the
secret key SKp can decrypt arbitrary ciphertexts encrypted
with the public key PKp, which makes it cannot be used
for secure multi-party data aggregation. In our encryption
algorithm, we split the parameter N in public key of original
Paillier PKp into m parts {n1, n2, · · · , nm}, and generate
secret keys SKMCi = sni

t mod N2 with the splitted N
for m MCs. Therefore, the secret key of original Paillier
SKp cannot decrypt ciphertexts encrypted with SKMCi .
Specifically, in our scheme, each MCi uses its secret key
SKMCi to encrypt each element a(i) in local training data
as [[a(i)]] = ga

(i) · hri · SKMCi mod N2, which cannot be
decrypted by EP even if EP owns the secret key SKp. How-
ever, after aggregating the ciphertexts of MCs, we have the
aggregated result [[a]] = g

∑m
i=1 a(i)+γ·

∑m
i=1 ri · sNt mod N2.

It can be seen that parameter N in public key of original
Paillier PKp is recovered, and EP is able to decrypt the

aggregated result correctly. Therefore, with our modified
Paillier cryptosystem, EP can only obtain aggregated infor-
mation from all MCs, while the local training data of each
MC is well protected.

Moreover, for inferring a MC’s local training data, EP
needs to collude with other m− 1 MCs, which is impossible
in practice. Therefore, collusion attack is resisted in CARER.
In addition, for each data aggregation task, a new task id st
is selected by TA to generate different secret keys for each
MC, with which the replay attack is also resisted.

• The Confidentiality of EP’s Disease Risk Prediction
Model is Achieved. During the model training phase,
since our proposed STDA algorithm is noninteractive, it
can be confirmed that MCs learn no information about
EP’s sensitive data. Therefore, the disease risk prediction
model of EP is kept secret from MCs. During the dis-
ease risk prediction phase, we introduce a secure two-
party inner product computation protocol to compute the
disease risk query responses for users. Specifically, after
receiving query request Cj , where j = 1, 2, · · · , 2u + 3,
EP combines vectors LIt = (Lit1, Lit2, · · · , Lit(2u+3)) and
LI′t = (Li′t1, Li

′
t2, · · · , Li′t(2u+3)), which are derived from

the disease risk prediction model, with query request Cj . In
detail, EP computes Dtj = Litj · αi ·Cj mod pi, if Litj ̸= 0;
Dtj = rj ·Cj mod pi, if Litj = 0, where j = 1, 2, · · · , 2u+3,
and computes query response Dt =

∑2u+3
j=1 Dtj = σ ·

(
∑

x′
j ̸=0,Litj ̸=0 x

′
j ·Litj ·α2

i +
∑

x′
j ̸=0,Litj=0 rj(x

′
j ·αi + cj)+∑

x′
j=0,Litj=0 rj · cj) mod pi for users. Note that Lit(2u+2) =

Lit(2u+3) = 0 ensures that at least two random numbers are
included in Dt, which can prevent users from guessing vec-
tors LIt and LI′t of EP. Therefore, the disease risk prediction
model can be well protected from users.

Furthermore, in our proposed scheme, each Ui first
extends its symptom vector to a (2u+3)-dimensional vector,
in which the numbers of 1 and 0 are u+1 and u+2, respec-
tively. Therefore, without modifying the extended vector
containing only one 1 maliciously, it is impossible for Ui to
obtain accurate vectors LIt and LI′t through inferring their
values in a specific dimension. Therefore, the confidentiality
of disease risk prediction model is achieved.

• The Privacy of Users’ Symptom Vectors and Query
Results is Guaranteed. For accessing disease risk prediction
services without disclosing sensitive data, each Ui first
extends her/his symptom vector into (2u+3)-dimensional,
and encrypts the extended vector X′ = (x′

1, x
′
2, · · · , x′

2u+3)
through computing Cj = σ(x′

j · αi + cj) mod pi, if x′
j ̸= 0;

Cj = σ · cj mod pi, if x′
j = 0, where j = 1, 2, · · · , 2u + 3.

We can see that each x′
j is one-time masked with random

number cj , therefore, Ui can ensure that each xj is privacy-
preserving against EP. Besides, since parameter σ is only
known by Ui, EP cannot retrieve the disease risk query
results Rt and R′

t. Then, both of the symptom vector and
query results of Ui can be well protected.

In addition, even if an attacker can eavesdrop communi-
cations between EP and users, and obtains all packets from
users and EP, it cannot obtain any useful information since
there are massive random numbers contained in query re-
quests and responses. Then, the privacy of users’ symptom
vectors and query results is Guaranteed.
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6 PERFORMANCE EVALUATION

In this section, we analyze and test the performance of
the proposed CARER in terms of computation cost and
communication overhead, and make the comparison with
the EPDP [17].

6.1 Evaluation Environment

In order to measure the integrated performance, we conduct
the experiment in Java running on the PC with one 2.2-
GHz Intel Core i7, 16-GB memory, and Windows 10 system.
Moreover, For CARER, we set the security parameters as
κ = 1024, k1 = 512, k2 = 200, k3 = 32, and k4 = 32. For
EPDP, we also set the security parameter of homomorphic
encryption κ = 1024, choose AES-256 and HMAC-SHA1
as the symmetric encryption algorithm and keyed crypto-
graphic hash function, respectively. Besides, we also set the
size of bloom filter in EPDP as 227. Similar to [17], we con-
sider two datasets. One real dataset is UCI machine learning
repository called Breast Cancer Wisconsin (Original) dataset
(BCW) [20]. We use the BCW dataset to test the prediction
accuracy for the proposed CARER. Besides, we also use the
synthetic dataset to test all factors affecting the performance
of CARER, and make the comparison with EPDP. The details
of the two datasets are described as follows.

• Real dataset (BCW): A medical dataset periodically
collected by a medical expert, which contains 699
instances used to execute the pre-diagnosis of suffer-
ing breast cancer. Specifically, each instance contains
nine symptom attributes (each attribute ranges from
1 to 10) and a target variable (2 for benign, 4 for
malignant).

• Synthetic dataset: In order to test the integrated
performance of the proposed CARER, we generate
a synthetic dataset randomly, which consists of 3000
instances. Each instance contains 20 attributes and
10 targets variables, and the value of each element is
randomly picked either 0 or 1.

6.2 Accuracy Evaluation

For verifying the effectiveness of CARER, we test the pre-
diction accuracy of CARER with BCW dataset, and make
a comparison with the case without privacy-preserving
mechanism. We first choose 3 subsets from BCW dataset for
simulating the local medical datasets of 3 MCs. Specifically,
MC1 owns 150 instances with third to ninth attributes, MC2

owns 150 instances with first to seventh attributes, and MC3

owns 183 instances with all nine attributes. Moreover, Since
the value of attributes in BCW dataset ranges from 1 to
10, each attribute should be extended to 10-dimension for
normalizing the dataset into binary. Then, we use the 3
local medical datasets to train two disease risk prediction
models (one is trained over plaintext, while the other is
trained with CARER), and test the prediction accuracy of
them with the other 200 instances in BCW dataset. Table 2
shows the test results, it can be seen that our proposed
scheme can provide high-accuracy disease risk prediction
results, while the accuracy is not affected by the privacy-
preserving mechanism.

TABLE 2
Accuracy Evaluation of CARER compared with plaintext training

Over plaintext CARER

Benign 84/86 (97.8%) 84/86 (97.8%)
Malignant 106/114 (93.0%) 106/114 (93.0%)
Overall 190/200 (95.0%) 190/200 (95.0%)

6.3 Computation Cost

In this section, we analyze and test the computation cost
of our CARER in terms of two phases, i.e., model training
phase and disease risk prediction phase, and make the
comparison with the EPDP.

For the sake of simplicity, we only record complex
arithmetical operations in this section. Specifically, we set
Cinv , Cexp and Cmul to represent the computation cost of a
modular inverse, a modular exponentiation and a modular
multiplication operation, respectively. Since EPDP uses the
bloom filter and symmetric encryption algorithm during the
disease query process, for convenience, we use CH , CSE

and CSD to represent the computation cost of a hash func-
tion, a symmetric encryption operation, and a symmetric
decryption operation, respectively. Besides, we also use m,
u, v, and l to represent the number of MCs, all collected
attributes, disease classes, and total instances for training
disease risk prediction model, respectively.

• Computation cost of our CARER
In CARER, during the model training phase, every MCi

encrypts its local training data through executing the modi-
fied Paillier cryptosystem, which costs m · (2uv + 2u+ v +
1) · (2Cexp + 2Cmul). Then, EP aggregates the ciphertexts
from MCs, and executes decryptions for obtaining the global
training data, which costs (m−1) · (2uv+2u+v+1) ·Cmul

and (2uv+2u+v+1) · (Cinv +Cexp+3Cmul), respectively.
Therefore, the total computation cost of model training is
(2uv+2u+v+1) ·(Cinv+(2m+1) ·Cexp+(3m+2) ·Cmul).
During the disease risk prediction phase, every Ui generates
its query request Cj , j = 1, 2, · · · , 2u + 3, which costs
(4uv + 6) · Cmul. Then, EP computes the query responses
Dt, t = 1, 2, · · · , v, in which 4v · (2u+ 3) ·Cmul is required.
Finally, the Ui costs 2v · Cmul to obtain the final query
results. Therefore, the total computation cost of disease risk
prediction is (8uv + 4u+ 14v + 3) · Cmul.

• Computation cost of EPDP
In EPDP, during the model training phase, every data

owner costs 3 · (2Cexp + Cmul) to encrypt its local training
data, thus, it costs 3l · (2Cexp + Cmul) totally for l users.
Then, for obtaining the global training data, the cloud
platform and healthcare provider cost 3 · (l − 1) · Cmul and
3 · (Cinv + 2Cexp + 3Cmul) to aggregate and decrypt the
ciphertexts, respectively. After this, it costs S·CH+v·CSE for
the healthcare provider to generate and encrypt the bloom
filter, where S is the number of vectors probably suffering
a disease. Therefore, the total computation cost of model
training is 6(l+1) ·(Cexp+Cmul)+3Cinv+S ·CH+v ·CSE .
During the disease risk prediction phase, each user first gen-
erates the encrypted disease risk query request, which costs
CH +2Cexp+Cmul. Then, the cloud platform computes the
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TABLE 3
computation cost of CARER vs EPDP

Model Training Disease Risk Prediction

CARER (2uv+2u+v+1)·(Cinv+2(m+1)·Cexp+(3m+2)·Cmul) (8uv + 4u+ 14v + 3) · Cmul

EPDP [17] 6(l + 1) · (Cexp + Cmul) + 3Cinv + S · CH + v · CSE 3 · (Cexp + Cmul) + CH + T · (CSE + CSD)
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Fig. 4. Computation Cost of CARER vs EPDP.

disease risk query response, in which Cexp+2Cmul+T ·CSE

is required, where T is the number of positive diseases.
Finally, the user decrypts the query responses to obtain
the final query results, which costs T · CSD . Therefore,
the total computation cost of disease risk prediction is
3 · (Cexp + Cmul) + CH + T · (CSE + CSD).

• Comparison
We present the comparison of computation cost for our

CARER and the EPDP in Table 3. From the table, we can
see that due to the medical data preprocessing operation,
the computation cost of our CARER is only related to the
number of medical centers, all collected attributes, and
disease classes while it is not affected by the number of
instances. Therefore, during the model training phase, the
computation cost of CARER is less than that of EPDP when
the number of training instances is large. Moreover, during
the disease risk prediction phase, the computation cost of
EPDP is much higher than our CARER since we simplify
the arithmetical operation of naı̈ve Bayesian classification,
and only modular multiplication operations are required in
CARER.

In Fig. 4, we set the number of MCs m = 3, and plot the
comparison of computation cost for our CARER and EPDP
with the generated synthetic dataset. Specifically, Fig. 4(a)
and Fig. 4(b) plot the computation cost comparison during
model training phase. Since the computation cost of our
CARER is independent of the number of instances and the
curves with l = 1200, 1500 and 1800 are coincident, we only
plot one curve for CARER. Then, in Fig. 4(a) and Fig. 4(b),
it can be seen that even if the computation cost of EPDP
does not increase with the number of symptoms attributes,
our CARER still performs much better than EPDP with
different numbers of symptom attributes, disease classes,
and instances. Moreover, Fig. 4(c) plots the computation cost
comparison during disease risk prediction phase. In detail,
we enlarge the computation cost of CARER in Fig. 4(c)
since it is too small to be shown clearly. It can be seen that

the computation costs of both CARER and EPDP linearly
increase with the number of symptom attributes and disease
classes, but our CARER is much efficient than EPDP, which
demonstrates that our CARER performs much better in
practice.

6.4 Communication Overhead
In this section, we analyze and test the communication
overhead of our CARER, and then make the comparison
with the EPDP.

• Communication overhead of our CARER
In CARER, during the phase of model training, each

MCi sends its encrypted local training data < [[NX(i)]],
[[NY(i)]], [[NZ(i)]], [[ND(i)]],[NL(i)]] > to EP. Since the security
parameter of our modified Paillier cryptosystem is κ, each
MCi spends 2 · (2uv + 2u + v + 1) · κ bits to outsource the
encrypted data to EP. Thus, the communication overhead
of model training is 2m · (2uv + 2u + v + 1) · κ bits with
m MCs. During the phase of disease risk prediction, each
Ui first sends her/his encrypted query request < Cj >, j =
1, 2, · · · , 2u+3 to EP, which spends (2u+3)·k1 bits. Then, EP
returns the query responses < Dt, D

′
t >, t = 1, 2, · · · , v to

Ui, which spends 2v · k1 bits. Therefore, the communication
overhead of disease risk prediction is (2u+2v+3) · k1 bits.

• Communication overhead of EPDP
In EPDP, during the phase of model training, it spends

9l · κ bits for data owners to send their encrypted local
training data, and the cloud platform spends 9κ bits to send
the aggregated results to the healthcare provider. Moreover,
for each disease, the healthcare provider returns a bloom
filter to the cloud platform, which spends v·|BF | bits, where
|BF | is the length of the bloom filter. Thus, the communica-
tion overhead of model training is (9l+9) ·κ+ v · |BF | bits.
During the phase of disease risk prediction, the user sends
her/his encrypted disease risk query request to the cloud
platform, which costs 2κ bits. Then, note that the number
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Fig. 5. Communication Overhead of CARER vs EPDP.

of diseases predicted as positive is T and the bit length
of disease name is |yt|, it costs T · |yt| bits for the cloud
platform to send query response to the user. Therefore,
the communication overhead of disease risk prediction is
T · |yt|+ 2κ.

TABLE 4
Communication Overhead of CARER vs EPDP

Model Training Disease Risk Prediction

CARER 4m · (2uv+2u+ v+1) ·κ (2u+ 2v + 3) · k1
EPDP [17] (9l + 9) · κ+ v · |BF | T · |yt|+ 2κ

• Comparison
We present the comparison of communication overhead

for our CARER and the EPDP in Table 4. Similar to computa-
tion cost, we can see that in the phase of model training, the
communication overhead of our CARER is independent of
the number of total instances while EPDP linearly increases.
Therefore, CARER performs much better than EPDP when
the number of training instances is large. In the phase of dis-
ease risk prediction, the communication of CARER increases
with the number of symptom attributes and disease classes,
but it is acceptable in practice and still lower than that of
EPDP. Besides, our CARER is able to provide a disease risk
list of all diseases for users while EPDP is not.

Fig. 5 plots the comparison of communication overhead
for our CARER and EPDP with 3 MCs. Specifically, Fig. 5(a)
and Fig. 5(b) plot the communication overhead comparison
during model training phase. Similar to computation cost,
since the communication overhead of our CARER is inde-
pendent of the number of instances and the curves with
l = 1200, 1500 and 1800 are coincident, we only plot one
curve for CARER. Then, in Fig. 5(a) and Fig. 5(b), it can be
seen that communication overhead of our CARER linearly
increases with the number of symptom attributes and dis-
ease classes while EPDP does not. However, our CARER
can maintain a low communication overhead with differ-
ent number of instances, symptom attributes, and disease
classes, while the EPDP spends much more communication
overhead than our CARER. Furthermore, Fig. 5(c) plots
communication overhead comparison during disease pre-
diction phase. From Fig. 5(c), it can be seen that although the
communication overhead of CARER linearly increases with

the number of attributes and disease classes, it is still lower
that of EPDP, and is acceptable in the real environment.

7 RELATED WORK

In this section, we briefly discuss some related works on
privacy-preserving model training and disease risk predic-
tion schemes.

Privacy-preserving model training. Recently, the
privacy-preserving data training schemes has been
studied widely in e-healthcare system. Li et al. [22]
introduced a privacy-preserving outsourced classification
framework based on fully homomorphic encryption,
where the evaluator and crypto service provider can
jointly train a naı̈ve bayesian classification model over
multi-party outsourced encrypted data. Based on additive
homomorphic encryption, Mandal et al. [23] designed
a method to securely execute gradient descent for
data owners and the cloud server, and further achieve
the privacy-preserving linear and logistic regression
model training. Gascón et al. [24] proposed privacy-
preserving protocols for training linear regression models,
which supports the secure model training over vertically
distributed datasets. Shen et al. [25] utilized the blockchain
techniques to build a secure and reliable data sharing
platform among multiple data providers, and constructed a
privacy-preserving SVM training scheme based on Paillier
encryption system. Wang et al. [26] introduced a privacy-
preserving collaborative model training scheme on skyline
computation, which allows healthcare centers securely train
a global diagnosis model with their local medical datasets.
Zhou et al. [27] proposed a novel secure data processing
protocol, which supports both homomorphic addition and
multiplication operations over ciphertexts. Based on the
proposed protocol, an efficient and privacy-preserving
dynamic medical text mining and image feature extraction
scheme was proposed. Most above-mentioned schemes
only achieve the privacy-preserving data training. Besides,
massive interactions are necessary between data providers
and cloud servers, which brings heavy communication
overhead in practice.

Privacy-preserving disease risk prediction. Nowadays,
the privacy-preserving disease risk prediction has also at-
tracted much attention from academia and industry. Ayday
et al. [28] combined the genomic, clinical and environmental
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TABLE 5
Functionality comparison

Liu et al [11] Yang et al [17] Zhu et al [13] Liu et al [18] Hua et al [21] CARER

Multi-party training 4 4 8 8 8 4

Vertical datasets supporting 8 8 8 8 8 4

Single cloud model 8 8 4 4 4 4

Disease risk list query 4 8 8 4 8 4

Whole process covering 4 4 8 8 8 4

High-efficiency 8 4 4 4 4 4

data, and proposed a privacy-preserving disease risk pre-
diction scheme with homomorphic encryption, which can
provide high-accuracy disease risk prediction services for
patients. Zhu et al. [13], [18], [21], [29] proposed a series
of disease prediction schemes based on machine learning
techniques, which utilized light-weight privacy-preserving
techniques to achieve secure and high-efficiency disease
risk prediction. Zhang et al. [30] built an efficient index
tree for the encrypted genetic data with bloom filters, and
introduced a general disease risk prediction framework,
which improved the computation and communication per-
formance significantly. Das et al. [31] developed a new secret
sharing method for protecting the users’ private genomic
and clinical data during the disease risk prediction, while
the authentication of disease risk query results is also en-
sured. Liu et al. [32] proposed a privacy-preserving clinical
decision support system through designing a secure single-
layer neural network, and extended the proposed scheme
to multiple-layer neural network. Ma et al. [33] proposed
the privacy-preserving random forest classification over
encrypted data with secure rational computation protocols
for disease prediction, which protected both classifier and
user’s sensitive data. However, there schemes only deal
with the phase of disease risk prediction, which cannot
achieve the integrated privacy-preserving from data train-
ing to disease risk prediction.

To achieve integrated privacy-preserving, Liu et al. [11]
proposed a new secure patient-centric clinical decision sup-
port system, which preserved the sensitive data in both
model training and prediction phases. However, this scheme
required complex mathematical operations, which makes it
hard to be deployed in practice. Yang et al. [17] presented
an efficient and secure disease risk prediction scheme based
on naı̈ve bayesian classification, which introduced super-
increasing sequence to reduce the dimension of datasets and
improve the efficiency. Nevertheless, since the coefficients
of super-increasing sequences increase exponentially, it is
difficult to be used in high-dimensional data encryption.
Moreover, there are few of existing schemes working on
multi-outsourced vertically distributed datasets in disease
risk assessment systems.

Different from existing privacy-preserving disease risk
prediction schemes, our proposed CARER achieves integrat-
ed privacy-preserving in both model training and disease
risk prediction phases. Moreover, CARER is high-efficient
in terms of computation cost and communication overhead,
and only one cloud is required in our system. In detail,
we make a comparison of CARER and existing schemes in

TABLE 5. From the table, it can be seen that our CARER is
more practical in the real environment.

8 CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving disease risk assessment scheme over multi-
outsourced vertical datasets, called CARER. Based on a
modified Paillier cryptosystem and random masking tech-
niques, in CARER, EP can securely train a disease risk pre-
diction model over vertically distributed medical data from
multiple medical centers, and provide privacy-preserving
disease risk prediction services for users. In this process, all
sensitive data of medical centers, e-healthcare provider, and
users were well protected. Moreover, the proposed scheme
greatly improved the efficiency of privacy-preserving dis-
ease risk assessment through data preprocessing and oper-
ation transformation. Detailed security analysis showed its
security strength and privacy-preserving ability, and exten-
sive experiments were conducted to verify its efficiency.
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